
Pułapki w samplowaniu negatywnych zdarzeń
Często podczas pozyskiwania informacji, otrzymujemy od naszych klientów dostęp do danych składających się wyłącznie z pozytywnych zdarzeń np. listy przedmiotów zakupionych przez każdego użytkownika lub klikniętych reklam. Wiele modeli uczenia maszynowego, aby móc prawidłowo oszacować prawdopodobieństwo pozytywnego zdarzenia potrzebuje też negatywnych zdarzeń. Mogą to być przedmioty, których użytkownik nie kupił podczas wizyty w sklepie (pomimo tego, że miał szansę je kupić) lub reklamy, które zobaczył, ale ich nie kliknął. W części projektów tych negatywnych zdarzeń jest tak dużo, że przetwarzanie ich wszystkich jest zbyt czasochłonne. W takich sytuacjach stosujemy samplowanie negatywnych zdarzeń, czyli wybór losowego podzbioru ze wszystkich potencjalnie dostępnych negatywnych